Ligand-induced perturbation of the HIF-2α:ARNT dimer dynamics

نویسندگان

  • Stefano Motta
  • Claudia Minici
  • Dario Corrada
  • Laura Bonati
  • Alessandro Pandini
چکیده

Hypoxia inducible factors (HIFs) are transcription factors belonging to the basic helix-loop-helix PER-ARNT-SIM (bHLH-PAS) protein family with a role in sensing oxygen levels in the cell. Under hypoxia, the HIF-α degradation pathway is blocked and dimerization with the aryl hydrocarbon receptor nuclear translocator (ARNT) makes HIF-α transcriptionally active. Due to the common hypoxic environment of tumors, inhibition of this mechanism by destabilization of HIF-α:ARNT dimerization has been proposed as a promising therapeutic strategy. Following the discovery of a druggable cavity within the PAS-B domain of HIF-2α, research efforts have been directed to identify artificial ligands that can impair heterodimerization. Although the crystallographic structures of the HIF-2α:ARNT complex have elucidated the dimer architecture and the 0X3-inhibitor placement within the HIF-2α PAS-B, unveiling the inhibition mechanism requires investigation of how ligand-induced perturbations could dynamically propagate through the structure and affect dimerization. To this end, we compared evolutionary features, intrinsic dynamics and energetic properties of the dimerization interfaces of HIF-2α:ARNT in both the apo and holo forms. Residue conservation analysis highlighted inter-domain connecting elements that have a role in dimerization. Analysis of domain contributions to the dimerization energy demonstrated the importance of bHLH and PAS-A of both partners and of HIF-2α PAS-B domain in dimer stabilization. Among quaternary structure oscillations revealed by Molecular Dynamics simulations, the hinge-bending motion of the ARNT PAS-B domain around the flexible PAS-A/PAS-B linker supports a general model for ARNT dimerization in different heterodimers. Comparison of the HIF-2α:ARNT dynamics in the apo and 0X3-bound forms indicated a model of inhibition where the HIF-2α-PAS-B interfaces are destabilised as a result of water-bridged ligand-protein interactions and these local effects allosterically propagate to perturb the correlated motions of the domains and inter-domain communication. These findings will guide the design of improved inhibitors to contrast cell survival in tumor masses.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

VARIATIONAL HOMOTOPY PERTURBATION METHOD FOR SOLVING THE NONLINEAR GAS DYNAMICS EQUATION

A. Noor et al. [7] analyze a technique by combining the variational iteration method and the homotopy perturbation method which is called the variational homotopy perturbation method (VHPM) for solving higher dimensional initial boundary value problems. In this paper, we consider the VHPM to obtain exact solution to Gas Dynamics equation.

متن کامل

Tacrine-Flavonoid Quercetin Hybride as a MTDL Ligand against Alzheimer’s Disease with Metal Chelating and AChE, BChE, AChE-induced Aβ Aggregation Inhibition Properties: A Computational Study

AChE is an enzyme that is predominate in a healthy brain, while BChE is considered to play a minor role in regulating the levels of ACh (memory molecule) in the brain. In addition to setting the ACh level, these two enzymes also facilitate Aβ aggregation by forming stable complexes and participate in the abnormal phosphorylation of the tau protein, which also contribute to the development of Al...

متن کامل

Link between allosteric signal transduction and functional dynamics in a multisubunit enzyme: S-adenosylhomocysteine hydrolase.

S-adenosylhomocysteine hydrolase (SAHH), a cellular enzyme that plays a key role in methylation reactions including those required for maturation of viral mRNA, is an important drug target in the discovery of antiviral agents. While targeting the active site is a straightforward strategy of enzyme inhibition, evidence of allosteric modulation of active site in many enzymes underscores the molec...

متن کامل

Hypoxia-inducible factor-2α regulates the expression of TRAIL receptor DR5 in renal cancer cells

To understand the role of hypoxia-inducible factor (HIF)-2alpha in regulating sensitivity of renal cancer cells to tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-induced apoptosis, we transfected wild-type and mutant von Hippel Lindau (VHL) proteins into TRAIL-sensitive, VHL-negative A498 cells. We find that wild-type VHL, but not the VHL mutants S65W and C162F that do not degr...

متن کامل

Molecular docking based screening of a simulated HIF-1 protein model for potential inhibitors

Hypoxia inducible factor-1(HIF-1) is a bHLH-family transcription factor that control genes involved in glucolysis, angiogenesis, migration, as well as invasion factors that are important for tumor progression and metastasis. HIF-1, a hetero dimer of HIF-1α and HIF-1β, binds to the hypoxia responsive genes, such as vascular endothelial growth factor (VEGF). It is one the molecular target for ang...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2018